Has anyone calculated the chance that any particular 2-card hand will beat any randomly-dealt 2-card hand for all the possible random boards? I'd like to know for judging the relative value of 2-card hands.
There are 47,008 possible distinct head-to-head matchups. I have calculated the exact W/L/T values for all these (and boy are my arms tired).
From this, it isn't hard to calculate the expectation of any two card hand. The exact ranking of all 169 hands is given below. It is interesting to compare these values with Justin Cases' table in _Percentage Hold'Em_, which used simulation to estimate the hand values. I think the main difference is that I counted ties as worth 1/2, while I think Justin's table counted ties as 1.
Note: These numbers do not give necessarily indicate how hands match up against each other, but how each hand will do independently against a random, unknown hand. For example, Q7s (0.5430) ranks just above K6off (0.5422) in the table. That means, if you all-in preflop against an unknown hand, you would pick Q7s instead of K6off. However, if you have a proposition bet where you can take either Qd7d or Kh6c against each other, then you should take Kh6c, since it is favored against Qd7d.
AA | 0.8520371 | A4s | 0.5903364 | K5 | 0.5331397 | 96s | 0.4742829 | 85 | 0.4142753 |
---|---|---|---|---|---|---|---|---|---|
KK | 0.8239568 | A7 | 0.5884120 | J9 | 0.5325120 | J2s | 0.4737815 | 64s | 0.4133332 |
0.7992516 | K8s | 0.5831235 | K2s | 0.5321173 | Q2 | 0.4729544 | 83s | 0.4087350 | |
JJ | 0.7746947 | A3s | 0.5822032 | Q5s | 0.5276941 | T5s | 0.4721626 | 94 | 0.4067105 |
TT | 0.7501178 | QJ | 0.5813469 | T8s | 0.5233437 | J5 | 0.4718089 | 75 | 0.4051197 |
99 | 0.7205725 | K9 | 0.5781192 | K4 | 0.5232747 | T4s | 0.4653049 | 82s | 0.4027163 |
88 | 0.6916304 | A5 | 0.5769653 | J7s | 0.5232478 | 97 | 0.4629781 | 73s | 0.4003594 |
AKs | 0.6704463 | A6 | 0.5768245 | Q4s | 0.5185530 | 86s | 0.4624327 | 93 | 0.4001951 |
77 | 0.6623602 | Q9s | 0.5766432 | Q7 | 0.5176567 | J4 | 0.4618638 | 65 | 0.3994430 |
AQs | 0.6620886 | K7s | 0.5753774 | T9 | 0.5153167 | T6 | 0.4609200 | 53s | 0.3969296 |
AJs | 0.6539268 | JTs | 0.5752786 | J8 | 0.5149016 | 95s | 0.4572187 | 63s | 0.3953356 |
AK | 0.6532007 | A2s | 0.5737890 | K3 | 0.5142569 | T3s | 0.4569251 | 84 | 0.3944679 |
ATs | 0.6460239 | QT | 0.5729078 | Q6 | 0.5102405 | 76s | 0.4537177 | 92 | 0.3909794 |
AQ | 0.6443184 | 44 | 0.5702282 | Q3s | 0.5101925 | J3 | 0.4527554 | 43s | 0.3864195 |
AJ | 0.6356326 | A4 | 0.5672968 | 98s | 0.5080076 | 87 | 0.4505081 | 74 | 0.3854983 |
KQs | 0.6340040 | K6s | 0.5664074 | T7s | 0.5063904 | T2s | 0.4483948 | 72s | 0.3815589 |
66 | 0.6328475 | K8 | 0.5602017 | J6s | 0.5060591 | 85s | 0.4454499 | 54 | 0.3815529 |
A9s | 0.6278121 | Q8s | 0.5601773 | K2 | 0.5050872 | 96 | 0.4449135 | 64 | 0.3801049 |
AT | 0.6272165 | A3 | 0.5584460 | 22 | 0.5033402 | J2 | 0.4434847 | 52s | 0.3784933 |
KJs | 0.6256734 | K5s | 0.5579292 | Q2s | 0.5016904 | T5 | 0.4425095 | 62s | 0.3766896 |
A8s | 0.6194381 | J9s | 0.5566247 | Q5 | 0.5012008 | 94s | 0.4386197 | 83 | 0.3748381 |
KTs | 0.6178856 | Q9 | 0.5536043 | J5s | 0.4998685 | 75s | 0.4367554 | 42s | 0.3682901 |
KQ | 0.6145580 | JT | 0.5524770 | T8 | 0.4972127 | T4 | 0.4350411 | 82 | 0.3682767 |
A7s | 0.6098396 | K7 | 0.5518735 | J7 | 0.4968193 | 93s | 0.4326426 | 73 | 0.3660226 |
A9 | 0.6077281 | A2 | 0.5492856 | Q4 | 0.4912768 | 86 | 0.4324090 | 53 | 0.3626477 |
KJ | 0.6056869 | K4s | 0.5488464 | 97s | 0.4911773 | 65s | 0.4313339 | 63 | 0.3607763 |
55 | 0.6032492 | Q7s | 0.5430226 | J4s | 0.4907045 | 84s | 0.4270163 | 32s | 0.3598443 |
QJs | 0.6025921 | K6 | 0.5422328 | T6s | 0.4894068 | 95 | 0.4266914 | 43 | 0.3514589 |
K9s | 0.5998848 | K3s | 0.5405498 | J3s | 0.4823162 | T3 | 0.4259455 | 72 | 0.3458365 |
A5s | 0.5992293 | T9s | 0.5402753 | Q3 | 0.4821944 | 92s | 0.4241517 | 52 | 0.3428465 |
A6s | 0.5990583 | J8s | 0.5401564 | 98 | 0.4809703 | 76 | 0.4232275 | 62 | 0.3407514 |
A8 | 0.5987261 | 33 | 0.5369308 | 87s | 0.4793634 | 74s | 0.4184931 | 42 | 0.3319975 |
KT | 0.5973892 | Q6s | 0.5361257 | T7 | 0.4790814 | T2 | 0.4166835 | 32 | 0.3230323 |
QTs | 0.5946756 | Q8 | 0.5359979 | J6 | 0.4784427 | 54s | 0.4145342 |